Rigorous Analysis of Discontinuous Phase Transitions via Mean-field Bounds

نویسنده

  • MAREK BISKUP
چکیده

We consider a variety of nearest-neighbor spin models defined on the d-dimensional hypercubic lattice Z. Our essential assumption is that these models satisfy the condition of reflection positivity. We prove that whenever the associated mean-field theory predicts a discontinuous transition, the actual model also undergoes a discontinuous transition (which occurs near the mean-field transition temperature), provided the dimension is sufficiently large or the first-order transition in the mean-field model is sufficiently strong. As an application of our general theory, we show that for d sufficiently large, the 3-state Potts ferromagnet on Z undergoes a first-order phase transition as the temperature varies. Similar results are established for all q-state Potts models with q ≥ 3, the r-component cubic models with r ≥ 4 and the O(N)-nematic liquid-crystal models with N ≥ 3.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of Phase Transitions in the Mean-field Blume–emery–griffiths Model By

In this paper we give a complete analysis of the phase transitions in the mean-field Blume–Emery–Griffiths lattice-spin model with respect to the canonical ensemble, showing both a second-order, continuous phase transition and a first-order, discontinuous phase transition for appropriate values of the thermodynamic parameters that define the model. These phase transitions are analyzed both in t...

متن کامل

Analysis of phase transitions in the mean-field Blume-Emery-Griffiths model

In this paper we give a complete analysis of the phase transitions in the mean-field Blume–Emery–Griffiths lattice-spin model with respect to the canonical ensemble, showing both a second-order, continuous phase transition and a first-order, discontinuous phase transition for appropriate values of the thermodynamic parameters that define the model. These phase transitions are analyzed both in t...

متن کامل

Universal Bounds on Coarsening Rates for Mean-Field Models of Phase Transitions

We prove one-sided universal bounds on coarsening rates for two kinds of mean field models of phase transitions, one with a coarsening rate l ∼ t and the other with l ∼ t. Here l is a characteristic length scale. These bounds are both proved by following a strategy developed by Kohn and Otto (Comm. Math. Phys. 229 (2002), 375-395). The l ∼ t rate is proved using a new dissipation relation which...

متن کامل

Symmetry breaking through a sequence of transitions in a driven diffusive system

In this work we study a two species driven diffusive system with open boundaries that exhibits spontaneous symmetry breaking in one dimension. In a symmetry broken state the currents of the two species are not equal, although the dynamics is symmetric. A mean field theory predicts a sequence of two transitions from a strongly symmetry broken state through an intermediate symmetry broken state t...

متن کامل

Continuous and Discontinuous Phase Transitions in Quantitative Genetics: the Role of Stabilizing Selective Pressure

The presence of phenomena analogous to phase transition in Statistical Mechanics, has been suggested in the evolution of a polygenic trait under stabilizing selection, mutation and genetic drift. By using numerical simulations of a model system, we analyze the evolution of a population of N diploid hermaphrodites in random mating regime. The population evolves under the effect of drift, selecti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003